Advances in CKD Detection and Determination of Prognosis: Executive Summary of the National Kidney Foundation–Kidney Early Evaluation Program (KEEP) 2012 Annual Data Report

Adam T. Whaley-Connell, DO, MSPH,1 Manjula Kurella Tamura, MD, MPH,2 Claudine T. Jurkovitz, MD, MPH,3 Mikhail Kosiborod, MD,4 and Peter A. McCullough, MD, MPH5,6,7

During 2012, the National Kidney Foundation (NKF)–Kidney Early Evaluation Program (KEEP) continued its efforts toward early detection of chronic kidney disease (CKD) in populations at high risk of kidney disease and toward improving awareness of CKD across the globe. Through the completely volunteer participation of the nephrology community, including physicians and our allied health care partners, KEEP continues to screen volunteer participants as part of a national effort to detect and track CKD. In 2012, we observed some changes in the CKD landscape, including questions regarding the utility of CKD screening and detection strategies from the US Preventive Services Task Force.1 Through the years, data derived from KEEP have provided important observations regarding detection and risk-stratification strategies using estimated glomerular filtration rate (eGFR) and proteinuria.2-4 In this past year, KEEP provided new information on topics including blood pressure control, disorders of mineral metabolism, and awareness of CKD and access to health care as related to CKD outcomes.5-11 In this supplement to AJKD, we focus on the variable nature of CKD progression. Interest is increasing in exploring factors that influence disease progression beyond traditional measures, such as blood pressure and glycemic control, and in determining the contribution of socioeconomic factors.12,13 We present 3 articles highlighting factors that influence disease progression in KEEP participants: (1) Chang et al14 describe risk factors for progression to end-stage renal disease (ESRD) among KEEP participants with preserved eGFR at screening, with and without albuminuria; (2) Amin et al15 report on whether synergism in using eGFR and albuminuria enhances risk prediction for death and disease progression; and (3) Jurkovitz et al16 report on insurance status as a risk factor for disease progression.

UNDERSTANDING RISK FOR PROGRESSION IN SCREENED PARTICIPANTS WITH PRESERVED ESTIMATED GFR

The present knowledge regarding disease progression has been defined by studies that explore factors such as hypertension, diabetes, and ethnicity, primarily in patients with already moderately decreased eGFR. However, there are few data for risk factors that influence progression in populations with preserved eGFR (ie, >60 mL/min/1.73 m²). Available evidence in this rather unique population is limited due to the relatively large sample sizes and long follow-up time needed to accrue ESRD cases. KEEP provides a unique opportunity to explore risk factors for disease progression in a large screened cohort of participants at high risk of early-stage CKD. Chang et al14 stratify participants by the presence or not of albuminuria and demonstrate that black race, diabetes mellitus, lower eGFR, and higher systolic blood pressure are associated with developing ESRD irrespective of albuminuria status (absolute magnitude of risk was higher for participants with albuminuria). Results from this study would suggest that screening for albuminuria in people with ESRD risk factors could aid in prognostication.

DOES USE OF ESTIMATED GFR AND ALBUMINURIA ENHANCE RISK PREDICTION?

An emerging subset of patients in population-based studies of CKD do not have proteinuria, but show progressively decreasing eGFR. Prior studies using KEEP and NHANES (National Health and Nutrition Examination Survey) data suggest that only a minority of participants experience both decreased eGFR.
Both ACR ≥ 30 mg/g and decreased eGFR were stronger predictors of progression to ESRD. These data suggest that using both decreased eGFR and the presence of albuminuria amplified the risk of mortality and progression to ESRD. Interestingly, the authors also report that the simple combination of lower eGFR and greater degree of albuminuria, such that the presence of both factors amplified the risk of mortality and progression to ESRD beyond what would be expected by the simple combination of their independent effects. Consistent with the present knowledge regarding decreased eGFR and the presence of albuminuria in CKD, both factors predicted mortality and progression to ESRD. A key novel observation was a highly significant interaction between lower eGFR and diabetes. Patients with and without insurance are more likely to have controlled blood pressure and diabetes. Uninsured patients with CKD are less likely to receive appropriate risk-factor interventions. However, the impact of insurance status in a screened population as it relates to disease progression and mortality is unknown. Jurkovitz et al. characterize the burden of disease in KEEP participants without insurance and report time to ESRD and death in participants with and without insurance. Interestingly, uninsured KEEP participants were 82% more likely to die and 72% more likely to progress to ESRD than their insured counterparts, a significant finding that remained after clinical adjustments. Considering the morbidity, mortality, and increasing costs associated with CKD, ensuring access to appropriate care and insurance coverage for patients with CKD would seem essential for optimal outcomes. This study is particularly timely with regard to the controversial issues of health care reform, and the data support the view that expansion of health care coverage to more individuals may, at least in the case of early detection of progressive CKD, promote improved outcomes and decreased costs.

SUMMARY

NKF-KEEP has been the only sustained chronic disease screening, detection, and awareness program in the United States. Its success should be attributed to the renal community and to a detection method that places a premium on patient care. Understanding of barriers to care and factors that influence disease progression in early CKD stages is limited, but crucial to improving CKD-related morbidity and mortality. KEEP data provide unique opportunities for the renal community to increase understanding of the role of detection on a large scale as related to variable CKD progression, related complications, and mortality. In 2012, data derived from KEEP continued to provide important information regarding CKD complications, such as control of blood pressure and mineral metabolism, and regarding awareness and access issues. In this supplement, we report factors that influence disease progression in high-risk participants with preserved eGFR, whether combined use of eGFR and albuminuria enhances risk prediction, and the role of insurance status.

The KEEP steering committee continues to develop novel methods to reach patients and providers, expand understanding of barriers to care, and increase CKD awareness and general measures to improve disease-related morbidity. We anticipate that future work also will improve the complex interface between disease detection, navigation of the health care system, and CKD-related outcomes. Of greatest importance will be movement toward enhanced scalability of KEEP to achieve even greater reach across the United States and in partnership with primary care physicians, spec-

INSURANCE STATUS AND RISK OF DEATH AND ESRD

Jurkovitz et al. explore whether health insurance status affects CKD-related outcomes. Studies of the general population suggest that lack of insurance is associated with higher mortality rates, and patients who
Figure 2. The role for detection of chronic kidney disease (CKD) in earlier stages to allow sufficient time for risk-factor reduction to reduce CKD-related complications and progression to renal replacement therapy. Abbreviations: ACR, albumin-creatinine ratio; eGFR, estimated glomerular filtration rate.

CKD PROGRESSION

<table>
<thead>
<tr>
<th>Risk Factor Reduction</th>
<th>Estimate Progression</th>
<th>Treat Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td><300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFR 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFR 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES